A 3T Head Scanner Designing Stage: the HTS magnet and the 200mT/m Hyper-Vision Gradient Coil

Kyoto Future Medical Instruments

Abstract

This work presents the design stage of a 3T MRI head scanner aimed to register temporal physiological events in the scale below 1 sec while imaging brain structures below 0.5 mm of resolution. The hyper-vision gradient coil concept is capable to produce 200 mT/m and nearly 1900 T/m/s using a high end amplifier. The 3D folded coil exhibits shoulder cut of an aperture of 250 mm and a DSV of 250mmx210mm while keeping resistance, eddy currents, force and inductive decoupling with the HTS magnet under control. Details and characteristics of the coil and magnet are presented in this work.

Introduction

- The causes of neurodegenerative diseases such as Alzheimer, Parkinson and dementia reminds unknown due to the lack of imaging tools capable to probe the interaction mechanism and interface of micro vessels with the brain tissue at the mesoscopic scale (<0.5mm).
- Current gradient coils performance limits the frontier of understanding of such mechanism mainly due to the lack of spatiotemporal resolution to probe physiological events in the scale below 1 sec and registering anatomical imaging with a resolution below 0.5mm.
- The connectome whole body gradient coil boosts 300 mT/m with risk of PNS if the coil is used at full performance.
- In this work an alternative head symmetric gradient coil is architected to produce 200 mT/m and nearly 1900 T/m/s to delve at the scale below 0.5mm. The coil will be combined with a 3T HTS magnet.
- e-poster presentation #: Engineering Beyond RF Coils . Day/. Date: Tuesday, 19 June 2018. Session Time: 17:15

The Magnet

- Bo strength 3T. HTS DI-BSCCO Type-HT (wire characteristics was provided by Sumitomo Electric Industries, Ltd.)
- pk-pk homogeneity smaller than 5 ppm was targeted in a 240 mm DSV
- The number of axial turns in each coil were constrained to be even, the peak field and the Br field component were constrained.
- safety margin, axial force, simplified hoop stress, sensitivity of the solution and computing precision were also controlled to guarantee a reliable and practical to manufacturer design.
- Bare bore size 600 mm was required.
- All coils at same inner radius.
- Stored Energy < 2.9MJ
- |Br|<4 T
- Peak Field < 5 T
- e-poster presentation #: Engineering Beyond RF Coils . Day/. Date: Tuesday, 19 June 2018.
 Session Time: 17:15

Stability Analysis

- Aim: Determine minimal number of azimuthal shims rails and guarantee a post-passive shim homogeneity small than 5 ppm within 240 mm DSV
- Predict the post-manufacturing homogeneity and spherical harmonic strengths.
- All coils to be randomly perturbed in the axial and radial directions more than 10000 times from the initial design. The range of tolerance was ±0.5 mm.
- Minimize the numbers of pockets to use on regards of a probable postmanufacturing homogeneity.
- Predict the possible maximum thickness to design the shim rail radial thickness profile.
- e-poster presentation #: Engineering Beyond RF Coils . Day/. Date: Tuesday, 19 June 2018.
 Session Time: 17:15

- Design a symmetric Head two Gradient coils: 0.35 -ID 360mm and 400 mm. OD 590 mm. 256 mm Gradient sensitivity > 200 μ T/A 0.25 Inductance <450 µH • Open access to shoulder 250 mm 0.15 Field linearity better than 6.5% 300mm 0.05 Force/Torque balanced. E 250mm 210 consecutive Minimum between gap -0.05conductors 1.7 mm Copper sheet thickness < 3 mm -0.15 Active shims inductively decoupled with 200mm magnet. -0.25 Ζ Peak current density minimized in Cryo. • X Y -0.35
 - Cryostat force balancing. Modal coil.
- e-poster presentation #: Engineering Beyond RF Coils . Day/. Date: Tuesday, 19 June 2018. Session Time: 17:15

-0.286

-0.205

-0.123

-0.0409

0.0409

0.123

0.205

0.286

Magnet Design

EM Design Stability

0.12	Homogeneity variation due to	manufacturing tolerance								
		Homogeneity Hist	Table 1. Statistical Analysis							
			Parameter	Value	Unit	Notes				
0.1			Mean	774.33	ppm	Central Tendency of the Distribution				
			Median	690.65	ppm					
			Standard	437.58	ppm	Data Spread Behaviour				
0.08			Deviation							
ruit)			Minimum	17.84	ppm					
an utary c			Maximum	2999.85	ppm					
(arbi			Outliers	61						
freq			25th	443.14	ppm	Quartiles				
0.04			Percentile							
			50th	690.65	ppm					
			Percentile							
0.02	_		75th	1029.28	ppm					
			Percentile							
وليليل			Semi	293.07	ppm					
0	500 1000 1500 ppm	2000 2500	Interquartile							
			Deviation							
			IQ range	586.144	ppm					
			Remarks							
			• The main tendency is to produce 690.65 ppm after the magnet is constructed.							
			The large group of in homogeneities reside between the 25th and 75th quartiles							

There is a range of 586.14 ppm between the quartiles.

EM Design Stability

22 azimuthal shims and 17 axial shims and the thickness is constrained to 4 mm in each pocket. Optimal number of shim rails 22. Guarantee 100% shimming.

Two models were designed: 360 mm ID,400mm ID

	Some characteristics of the Hyper-Vision gradient colls ("connectome")							
	Envelope->	ID/OD-360mm/590mm			ID/OD-400mm/590mm			
	Properties	Х	Y	Z	Х	Y	Z	
Decouple from the Magnet	η (μT/A)	258	257	250	203	204	251	
	Inductance (µH)	462	315	256	436	387	406	
	Resistance (mΩ)	97	119	84	91	118	120	
	Slew rate (T/m/s)@2000V	1078	1564	1893	894	1053	1245	
	Conduct. Thickness (mm)	2.2	2.5	2.2	2	2.5	3	
	Conduct. min width (mm)**	2.4	5	3.2	2.4	5	4.4	
	Residual Eddy (%)*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Roll over from center (mm)	145	172	150	150	150	150	
	DSV	225mmX190mm			250mmX210mm			
	Max Non- linearity (%)	6.5	6.2	-6.5	-6.5	-6.2	-6.5	
Z Coil Profile	Max Non- Uniformity (%)	-25	+28	-33	-23	+28	-27	
• e-poster presentation #: Engineerin	field in DSV max	decays with non-linearity	only one tir is 5% respec	ne constant ct to primary	(one eigenm field for a lo	ode excited	l). The edd 1s	

Some characteristics of the Hyper-Vision gradient coils ("connectom

	Envelope-> ID/OD-360mm/590mm			0mm	ID/OD-400mm/590mm			
	Properties	Х	Y	Z	Х	Y	Z	
Decouple from the Magnet	η (μΤ/Α)	258	257	250	203	204	251	
	Inductance (µH)	462	315	256	436	387	406	
	Resistance (mΩ)	97	119	84	91	118	120	
	Slew rate (T/m/s)@2000V	1078	1564	1893	894	1053	1245	
	Conduct. Thickness (mm)	2.2	2.5	2.2	2	2.5	3	
	Conduct. min width (mm)**	2.4	5	3.2	2.4	5	4.4	
	Residual Eddy (%)*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Roll over from center (mm)	145	172	150	150	150	150	
	DSV 225mmX190mm		250mmX210mm					
	Max Non- linearity (%)	6.5	6.2	-6.5	-6.5	-6.2	-6.5	
X Coil Profile	Max Non- Uniformity (%)	-25	+28	-33	-23	+28	-27	
	*The linear term	decays with	only one ti	me constant	(one eigenm	ode excited	d). The edu	
	Theid in DSV max h		is 5% respe	quito pinimali V	melo for a lo	ng pulse of	15	

• e-poster presentation #: Engineerin Session Time: 17:15

some characteristics of the Hyper-Vision gradient colls (connectome)								
	Envelope->	ID/OD-360mm/590mm			ID/OD-400mm/590mm			
	Properties	Х	Y	Z	Х	Y	Z	
Decouple from the Magnet	η (μT/A)	258	257	250	203	204	251	
	Inductance (µH)	462	315	256	436	387	406	
	Resistance (mΩ)	97	119	84	91	118	120	
	Slew rate (T/m/s)@2000V	1078	1564	1893	894	1053	1245	
	Conduct. Thickness (mm)	2.2	2.5	2.2	2	2.5	3	
	Conduct. min width (mm)**	2.4	5	3.2	2.4	5	4.4	
Y	Residual Eddy (%)*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	Roll over from center (mm)	145	172	150	150	150	150	
	DSV	225mmX190mm		250mmX210mm				
	Max Non- linearity (%)	6.5	6.2	-6.5	-6.5	-6.2	-6.5	
Y Coil Profile	Max Non- Uniformity (%)	-25	+28	-33	-23	+28	-27	
• • • • • • • • • • • • • • • • • • •	*The linear term field in DSV max	decays with on non-linearity i	only one tim is 5% respec	ne constant t to primary	(one eigenm field for a lo	ode excited	d). The eddy 1s	

 e-poster presentation #: Engineerin Session Time: 17:15

Y Coil AC Model

Time-Harmonic 1 kHz

Typical epoxy and copper Young's module, poison ratio, density and damping.

Parameters to Calculate:

Displacement, velocity and acceleration and sound pressure.

Eddy current due to the term **v**x**B** and force.

• e-poster presentation #: Engineering Beyond RF Coils . Day/. Date: Tuesday, 19 June 2018. Session Time: 17:15

Conclusion

The designing stage of a head scanner based on a 3T HTS magnet has been presented. The hyper-vision gradient coil producing 200 mT/m and nearly 1900 T/m/s to delve at the mesoscopic scale the connection between micro-vessels and brain tissue has been introduced. The two hyper-vision coil envelopes with standard ergonomics dimensions classifies as "connectome" gradient coils and would be the necessary boosting to bring UHF to clinical practice at its full potentiality.

e-poster presentation #: Engineering Beyond RF Coils . Day/. Date: Tuesday, 19 June 2018.
 Session Time: 17:15

Thanks

